INNOVATIVE TECHNOLOGIES INCORPORATED IN CLEAN FUEL PROJECT (CFP) OF KUWAIT NATIONAL PETROLEUM COMPANY (KNPC)

1 of 15

- Introduction
- > Objectives
- CFP Salient Features
 - **UKey units**
 - **DEnergy Management**
 - **Environment Control**
- > Conclusion

INTRODUCTION

KNPC is responsible for domestic refining & gas processing

MAB: Mina Abdulla Refinery **MAA:** Mina Ahmadi Refinery

3 of 15

CFP OBJECTIVES

MODERNIZE	KNPC refineries
BUILD	World class Integrated refining complex
INNOVATION	State of art technology selected
ENVIRONMENT	Minimize emissions & produce low Sulphur products
OPTIMIZE	Refinery assets
PRODUCE	High value products
ENHANCE	• Profitability
RELIABILITY	Minimize downtime

CFP Salient features

Key Units Energy Management **Environment**

CFP Salient features : CDU

- > Fractionator
 - Top trays Metallurgy Hastealloy C for improved corrosion resistance to enhance reliability
 - Horizontal feed inlet device Scheopentoeter type inlet which reduces entrainment of liquid with vapour
 - Overhead exchanger Vertical exchanger for effective water wash , corrosion mitigation & reliability

Scheopentoeter type feed inlet

Vertical exchanger

> Heaters

- Heaters with low NO_x burners NO_x level 64 PPM with FG firing
- Heaters Decoking Mechanical
- Continuous emission monitoring system provided

CFP Salient features : ARDS

- State of Art reactor internals
- Up flow reactor technology Low differential pressure across system for better feed preparation of downstream fixed bed reactor
- Unit designed to produce 0.5 % 'S' ARDR & can meet IMO fuel oil regulations if required
- > Stripper followed by fractionator configuration
- Hydrogen recovery system Membrane based Integrated hydrogen recovery of 92 ~ 99% purity

CFP Salient features : HCR

- State of Art reactor internals for better distribution & catalyst utilization
- Operation Mode JET/JP5/PMD/LOBS
- Separate pre-treatment reactor before of 1st stage
- > Naphtha product Sulphur guard reactors for final mercaptan removal
- > Diesel Product Integrated vacuum drier system for moisture removal

Liquid collection tray Mixing chamber Rough Liq. Distribution Vap/ Liq. Distribution —

CFP Salient features : DHT

- State of Art reactor internals for better distribution & catalyst utilization
- > Single reactor with multiple beds
- Integrated dewaxing system
- > Diesel Product Integrated vacuum drier system for moisture removal
- Diesel product will meet stringent diesel winter specifications

State of the art internals

CFP Salient features : HPU

- Configuration includes Pre-Reformer, Reformer, HTER, MTS and PSA with multiple beds
- HTER / Pre-reformer technology with reduced equipment (reformer)size and minimal steam production by effective use of waste heat for improved Hydrogen production

CFP Salient features - Energy Management

- HTER system configuration for large scale Hydrogen production with improved Energy Efficiency (effective use of waste heat mainly for H₂ production and minimum Steam production)
- > Integrated PSA off gas for Reformer as primary fuel
- Contra Trace Technology as compared to conventional Jacketed Steam heating for Liquid Sulphur lines
- Use of MDEA (Methyl Di-Ethanol Amine) as Amine selection for lower Amine circulation rate and lower regeneration energy

CFP Salient features - Environment

- Vacuum off gas Sweet gas to vacuum heater
- **>** Low NO_X burners
- Decoking of heaters Mechanical
- Reduced SO_X emissions from SRUs 50 PPM SO_X emissions achieved by recycling of H2S from liquid Sulphur to Claus section of Unit
- Reduced H2S in molten Sulphur Air sparging for Sulphur degassing to achieve 10 PPM H2S

Overall CFP Impact to KNPC

- > Twice the rated EDC (Equivalent Distillation Capacity)
- Quantum shift in Complexity factor

Conclusion

CFP salient design features/ technologies enable KNPC to achieve its strategic objectives:

- > To upgrade , modernize & expand the Refining capacity
- To meet stringent product specifications
- > To meet product demand in domestic and international markets
- Complete Bottom of Barrel Conversion
- Cleaner environment

Thank You

15 of 15

