



# **Technological Initiatives for Carbon Management and Energy Security**

### Oki Muraza

Research & Technology Innovation PT Pertamina (Persero)



PERTAN



## **Ensuring Energy Transition while Enabling Energy Security**

Pertamina is committed to support Indonesia government commitment to achieve Net Zero by 2060 or sooner by developing roadmap of asset decarbonization and green business building





### Pertamina Green Business Initiatives

Estimated 2060 capacity<sup>1</sup> and cumulative capex<sup>2</sup> up to 2060



3. Based on 2022 emission data



www.pertamina.com

## **Several Pillars of Energy Transition**

To Support Net-Zero Aspirations and the Decarbonization Agenda





#### **Circular Carbon Economy**

Pertamina plan to apply Circular Carbon Economy in several area: Recycle : Biomass, Biogas Reduce : Solar PV, EV, LNG Bunkering, CCS Reuse : CCUS for EOR/EGR and CCU to PCC and methanol



### Hydrogen

Pertamina has started the initiatives for utilization of green hydrogen in Indonesia which will use electricity from geothermal field

#### **Bio Energy**

Biomethane from Biogas, blending of FAME with gasoil, bioethanol from waste biomass



## Green Refinery

Development of Green refinery in Cilacap and Plaju



### EV Battery & Energy Storage System

Participate in Indonesia Battery Company Joint Venture. Develop EV battery ecosystem including swapping & charging business



### **Fuel Switching**

Methanol Plant construction for fuel switching, Plan to on stream in 2025



### New Renewable Energy

Power generator capacity enhancement in 2020 – 2026:

- Solar PV
- Wind
- Hydro



#### Geothermal

Capacity enhancement from 672 MW in 2020 to 1128 MW in 2026



# Initiatives on Carbon Capture, Utilization and Storage in Pertamina

Collaborations in developing CCS/CCUS Project with Global Partners

| No | Project                                                                    |  |
|----|----------------------------------------------------------------------------|--|
|    | Study CCS/CCUS                                                             |  |
| 1  | CCS/CCUS Hubs Central Sumatra                                              |  |
| 2  | CCS Coal to DME Plant Tanjung Enim (South Sumatra )                        |  |
| 3  | CCS/CCUS Hubs in Kutai and Sunda-Asri basin                                |  |
| 4  | CO <sub>2</sub> Huff and Puff Jatibarang Field                             |  |
| 5  | CCUS CO2-EGR Gundih Field                                                  |  |
| 6  | CCUS CO2-EOR Sukowati Field                                                |  |
| 7  | CCS in Donggi-Matindok (Central Sulawesi)                                  |  |
|    | CO <sub>2</sub> Utilization Study / Study CCU                              |  |
| 8  | Utilization stranded field with high CO <sub>2</sub> content               |  |
| 9  | Methanol production from green hydrogen                                    |  |
| 10 | Utilization of CO <sub>2</sub> into green methanol in the geothermal field |  |
| 11 | PCC Production from $CO_2$ in natural gas plant (SP)<br>Subang             |  |
| 12 | CO <sub>2</sub> fixation with microalgae                                   |  |
| 13 | CO <sub>2</sub> reforming for chemical production                          |  |

CCU study at the Balikpapan refinery unit



CCUS business is conducted via bilateral agreements between individual players in each area. As the scale of CCUS expands, we will see **larger integration of CCUS business** 



PERTAMINA

### in f 🗾 🖸 🞯 @pertamina

14

## **CCS/CCUS Initiatives in Sumatera and Java**



SLIDES 5





## **CCS Initiatives in Java and Central Sulawesi**

| 4 660               |
|---------------------|
| Field               |
| Source              |
| Potential reduction |
| Status              |
|                     |
|                     |

| CCUS | <b>CO</b> 2 | EOR | Jatibarang |
|------|-------------|-----|------------|
|------|-------------|-----|------------|

**Jatibarang,** West Java CO2 from natural gas processing Subang

14.6 thousand ton CO2/year

- Feasibility study 2022
- Pilot CO<sub>2</sub> Injection 2026
- EPC 2029
- Implementation 2031

in f У



**CCUS/EGR** Gundih

#### Gundih, Central Java

CO2 from natural gas processing / CPP Gundih

PERTAMINA

3 Million ton CO2 in 10 years

- FS Feb 2022
- FEED 2025
- EPC 2027
- Implementation 2027

7





## Field Sukowati, East Java

Source

Potential

reduction

**Status** 

CO2 from natural gas processing JTB gas plant

14.2 Million ton CO2 in 25 years

- FS & FEED 2023
- EPC Pilot 2025
- Pilot test 2027
- EPCI 2028
- Implementation 2030

### **CCS in Donggi-Matindok Blok** (Central Sulawesi)

@pertamina









# Low Carbon Hydrogen Production combined with CCS/CCUS



Collaborative development on low carbon hydrogen in Balikpapan Refinery



[1] **RU V Balikpapan** (RDMP phase 1): around 120,000 Nm<sup>3</sup>/hr
[2] Kutai basin, East Kalimantan is one of the basins with the largest CO<sub>2</sub> storage capacity

**Notes** Distance to injection location: ± 50 km

\*need more detailed subsurface study and characterization



www.pertamina.com



# **CO<sub>2</sub>** Utilization to Methanol in Pertamina Field





## **Renewable Diesel & Sustainable Aviation Fuel (SAF)**





## **Waste Biomass to BioEthanol**





Indonesian Ethanol Supply and Demand for Fuel Blending

- 1. Current Ethanol production capacity is merely 180.000 kLa, mostly from molasses.
- 2. Ethanol demand for E5 is 1.875.000 kla, and will be doubled for E10.
- Indonesia has huge potential biomass supply to be converted to ethanol. Palm Oil EFB potentially produced 5.359.000 kLa ethanol.

**Pertamina** has a plan to build **2nd Generation Bioethanol Plant** with capacity **50 kta (66.000 kLa)** using EFB as feedstock in KEK Sei Mangkei or other locations



### Other Potential Feedstock – Sorghum



@pertamina



0)

in f 😏 🕩



Molasses from Sorghum Stem



SLIDES

Bioethanol 70.000 kL/year <sup>2</sup>

1<sup>st</sup> G Bioethanol Processing Plant



Source: <sup>1</sup>BPS. <sup>2</sup>Prasad, 2007

www.pertamina.com

## **Technological Initiatives for Carbon Management and Energy Security Summary**

- Many CCU, CCS and CCUS initiatives are developed by Pertamina with numerous partners which require advanced technological development for decarbonization.
- There are a number of potential projects on Blue Hydrogen (with CCUS) and Green Hydrogen from Geothermal power generation
- Biofuel development is very strategic for Sustainability and Energy Security
- Different sources of renewable feedstocks are studied for Renewable Diesel production including POME oil, non edible oil and used cooking oil.
- Bioethanol from waste biomass has potential to reduce Scope 3 emission and create circular economy in plantation.



PERTAMINA

